Cryptography

4 - Public-key encryption: RSA

G. Chênevert October 7, 2019

Principle

Cryptanalysis

Key generation

In practice

Asymmetric cryptography

Two different keys are used: one for encryption, one for decryption

if knowledge about one gives no information about the other

 \implies one of them can be made public

Public-key encryption

The encryption key k_e is made public (k_d kept private)

anyone can write to Bob, but only he can read

As implemented by *e.g.* PGP/GPG

Famous "asymmetric" problems

• factorization of large integers

 \implies RSA

• discrete logarithm problem (DLP)

 \implies Diffie-Hellman, ElGamal, DSA

• DLP over an elliptic curve

 \implies elliptic curve cryptography (ECC): ECDH, ECDSA, ...

• shortest vector problem

 \implies lattice-based cryptography ...

Factorization is asymptotically much slower than multiplication

ℓ	80	*
attempt_factoring		
p = 800022ef0dda04b95e53 q = 7d081afd58bbc8c65ad1		
p*q = 3e841e8e8148a14677fb5c5b6c34dc57d2b12fc3		
Multiplication: 0.000426 s Factorization: 0.689492 s		

Try it for yourself

Recall (?)

Definition

We say that $a \equiv b$ when *n* divides b - a, *i.e.* b = a + kn for some integer k

i.e. a and b are equal, up to ("modulo") a multiple of n

Remarks:

•
$$a \equiv b$$
 if and only if $a \% n = b \% n$

• If
$$a \equiv b$$
 and $c \equiv d$, then $(a + c) \equiv (b + d)$ and $(ac) \equiv (bd)$

Fix some (large) integer n.

 $\mathcal{M} = \mathcal{C} = \mathbb{Z}/n\mathbb{Z}$, identified with $\llbracket 0, n \llbracket$

$$\begin{cases} E(e,m) :\equiv m^e \\ D(d, c) :\equiv c^d \end{cases}$$

based on modular exponentiation

Easy enough!

Or is it? (try a larger ℓ)

Modular exponentiation

Naive algorithm to compute $m^e \% n$:

$$r = 1$$

for *i* in [[1, e]]
$$r = r * m$$

return $r \% n$

Problems:

- intermediate result r gets LARGE
- takes e iterations

Better algorithm to compute $m^e \% n$:

$$r = 1$$

for *i* in [[1, e]]:
$$r = (r * m) \% n$$

return *r*

But:

• still takes e modular multiplications ...

Fast exponentiation, v.1 (R to L)

Write
$$e = b_\ell \cdots b_0$$
 in base 2, so that $m^e \equiv m^{b_0} (m^2)^{b_1} (m^4)^{b_2} \cdots (m^{2^\ell})^{b_\ell}$.

$$r = 1, q = m$$

for *i* in $[0, \ell]$:
if $b_i = 1$:
 $r = (r * q) \% n$
 $q = q^2 \% n$
return *r*

at most $2(\ell + 1)$ modular multiplications!

Let's compute 33²⁹ modulo 227.

With m = 33, n = 227 and e = 29 = 11101:

i		0	1	2	3	4
b		1	0	1	1	1
q		33	181	73	108	87
r	1	33	33	139	30	113

so $33^{29} \equiv 113$ (indeed).

Fast exponentiation, v.2 (L to R)

Can get rid of the running variable q by writing

$$m^{e} \equiv (\cdots ((m^{b_{\ell}})^{2} m^{b_{\ell-1}})^{2} m^{b_{\ell-2}} \cdots m^{b_{1}})^{2} m^{b_{0}}$$

$$r = 1$$
for *i* in [[0, *l*]]:
$$r = r^{2} \% n$$
if $b_{\ell-i} = 1$:
$$r = (r * m) \% n$$
return *r*

In both cases: running time in $\mathcal{O}(\log_2 e)$

With the same values as before:

i		0	1	2	3	4
b		1	1	1	0	1
r	1	33	71	189	82	113

which is coherent with previous results (but uses half the memory).

Ok: that's fast

Indeed!

The RSA cipher (again)

$$\begin{cases} E(e,m) \equiv m^e \\ D(d, c) \equiv c^d \end{cases}$$

Correct decryption:

Why should there exist such exponents such that

$$m^{de} \equiv m \qquad \forall_m ??$$

Chinese Remainder Theorem

If n can be written as a product of coprime factors

 $n=n_1\cdots n_k,$

then there is an isomorphism of rings

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}.$$

- (\rightarrow) take remainders
- (←) use Bézout's relation

Example

$\mathbb{Z}/12\mathbb{Z} \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$

	0	1	2	3
0	0	9	6	3
1	4	1	10	7
2	8	5	2	11

Consider the number $\varphi(n)$ of integers in $\llbracket 1, n \rrbracket$ that are coprime with n.

Theorem (Fermat)

For all x coprime with n,

$$x^{\varphi(n)} \equiv 1$$

i.e., modular exponents work modulo $\varphi(n)$: $x^a \equiv x^b$ when $a \equiv \varphi(n) = b$.

Almost there

Special case: suppose $n = p_1 \cdots p_k$ is a product of distinct prime factors, so that

$$\varphi(n)=(p_1-1)\cdots(p_k-1).$$

Corollary

In this case, if
$$f \equiv_{\varphi(n)} 1$$
 then $x^f \equiv_n x \quad \forall_x$.

Hence: it is sufficient to ask that the RSA exponents satisfy

$$de \equiv_{\varphi(n)} 1$$

A small (thus very insecure) working example

n = 74989 phi = 69600 e = 52027 d = 10963		
d*e mod phi	= 1	
message: encryption: decryption:	60211 13247 60211	

Try here

Principle

Cryptanalysis

Key generation

In practice

Security of RSA

Public: n, e, c.

The attacker would like to recover m.

• Brute force on *m*: search for *x* such that

$$x^e \equiv c.$$

 \implies Impractical if *n* large

• Better: try to recover the decryption exponent d, then decrypt m like Bob

$$m\equiv \sqrt[e]{c}\equiv c^d.$$

Given e and $\varphi(n)$, the extended Euclidean algorithm easily solves

$$de \equiv_{\varphi(n)} 1.$$

But: computing $\varphi(n)$ from *n* is (assumed to be) hard.

Best known algorithm: **factor** $n = p_1 \cdots p_k$ and use

$$\varphi(n)=(p_1-1)\cdots(p_k-1).$$

Factoring vs. splitting

Factoring *n*: finding the complete list of prime factors (p_1, \ldots, p_k) for which

 $n=p_1\cdots p_k.$

Splitting *n*: finding *one* prime factor *p* of *n*.

Essentially all known factorization algorithms are of the form

factors = []
while
$$n > 1$$
:
 $p = \text{split}(n)$
factors += [p]
 $n = n // p$

Trial division

The simplest splitting algorithm:

p = 2while $p \le \sqrt{n}$: if n % p = 0 return pp += 1return n

Quickly finds small ($\leq 2^{64}$) prime factors

 \implies smallest prime factor should be as large as possible

$$p_i \approx \sqrt[k]{n} \implies$$
 take $k = 2!$ (why not $k = 1$?)

There is a very large litterature devoted to the subject of integer factorization.

As of 2019, the best general purpose algorithm is the General Number Field Sieve (GNFS) that factors an ℓ -bit integer in

 $\approx 5.5^{\ell^{1/3} (\ln \ell)^{2/3}}$ time.

Public factorization record: RSA-728 (2009)

Consequence on key length

According to RSA Security, Inc.

Symmetric key size	Equivalent RSA key size
80	1024
112	2028
128	3072
256	15360

Principle

Cryptanalysis

Key generation

In practice

Recovering the decryption key should be hard for the attacker...

... but easy for Alice and Bob!

Ok since they are free to choose the prime factors of n.

Key generation: produces a RSA triple (n, d, e)

Prime factors

To generate an ℓ -bit RSA modulus *n*:

- generate two random $\ell/2$ -bit prime numbers p and q
- set $n := p \cdot q$

To generate a random prime number:

• generate random integers until you get a prime!

(there are some very fast primality tests)

Note: density of prime numbers around x is $\approx \frac{1}{\ln x}$

- Knowing p and q, compute $\varphi(n) = (p-1)(q-1)$
- Pick *e* coprime with $\varphi(n)$ (doesn't even need to be chosen randomly)
- Compute *d* such that

de
$$\underset{arphi(n)}{\equiv} 1$$

using the extended Euclidean algorithm (XGCD)

Principle

Cryptanalysis

Key generation

In practice

Real-world RSA

The plain RSA described above has all sorts of problems:

- malleability: $E(e, m_1) \cdot E(e, m_2) = E(e, m_1 \cdot m_2)$
- lack of randomness
- fixed size of plaintext
- ...

In practice, a suitable padding scheme needs to be used.

 \implies use a library!