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Asymmetric cryptography

Two different keys are used: one for encryption, one for decryption

if knowledge about one gives no information about the other

=⇒ one of them can be made public



Public-key encryption

The encryption key ke is made public (kd kept private)

anyone can write to Bob, but only he can read

As implemented by e.g. PGP/GPG

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/GNU_Privacy_Guard


Famous ”asymmetric” problems

• factorization of large integers

=⇒ RSA

• discrete logarithm problem (DLP)

=⇒ Diffie-Hellman, ElGamal, DSA

• DLP over an elliptic curve

=⇒ elliptic curve cryptography (ECC): ECDH, ECDSA, . . .

• shortest vector problem

=⇒ lattice-based cryptography . . .



For two `-bit factors

Factorization is asymptotically much slower than multiplication

Try it for yourself

https://sagecell.sagemath.org/?z=eJx1kMGqwjAQRfeC_zAUhVSCWMFNoeDKnTuXD0teO9XANE3jFMSvf6mpPos6yzm55w7ZasPoVMHTyXRSYgW5IMjgQrpEJxK5SdYykclKkvpFyqLZDxLNoliCYsbacl75cOO0OWUH12Gc9iLwY73GKVM2dW6drlGsjxQH1H5GQ867GKI-Pr9EMAe7PONVxCPaPmn7oIGzB4XtuLcOEeNXdtGO_OOqxb_OvJWNnu47Ym1JF4p1Y1IfgnvsUcnPQ3T1_kNpQF_u7Cc8FeZlNTTvguT2tfgP-Lh8mQ==&lang=sage&interacts=eJyLjgUAARUAuQ==


Modular arithmetic

Recall (?)

Definition

We say that a ≡
n
b when n divides b − a, i.e. b = a + kn for some integer k

i.e. a and b are equal, up to (”modulo”) a multiple of n

Remarks:

• a ≡
n
b if and only if a% n = b % n

• If a ≡
n
b and c ≡

n
d , then (a + c) ≡

n
(b + d) and (ac) ≡

n
(bd)



Rivest-Shamir-Adleman (1977)

Fix some (large) integer n.

M = C = Z/nZ, identified with [[0, n[[

E (e,m) :≡
n
me

D(d , c) :≡
n
cd

based on modular exponentiation



Easy enough!

Or is it? (try a larger `)

https://sagecell.sagemath.org/?z=eJx1jkEKgzAQRfeCdxiCQhKCqNBNQeg5pCC2-aXCJJboosdvrMVSsLOc94Y3p8HPCP11TpM0sbhRJ5kamniwCLIyh9JUpi4N9xdwI7IzmDOh1HHxKY6PdtsWofd2dB0YDn6WtdasVsHtCv5D8Zeu_BHigySWSj4JyskXdzyl-qFuo26HYqPYu9Ua5EZL34R872JKrf4LRs1M3w==&lang=sage&interacts=eJyLjgUAARUAuQ==


Modular exponentiation

Naive algorithm to compute me % n:

r = 1

for i in [[1, e]]:

r = r ∗m
return r % n

Problems:

• intermediate result r gets LARGE

• takes e iterations



Modular exponentiation (again)

Better algorithm to compute me % n:

r = 1

for i in [[1, e]]:

r = (r ∗m) % n

return r

But:

• still takes e modular multiplications . . .



Fast exponentiation, v.1 (R to L)

Write e = b` · · · b0 in base 2, so that me ≡
n
mb0(m2)b1(m4)b2 · · · (m2`)b` .

r = 1, q = m

for i in [[0, `]]:

if bi = 1:

r = (r ∗ q) % n

q = q2 % n

return r

at most 2(` + 1) modular multiplications!



Example (v.1)

Let’s compute 3329 modulo 227.

With m = 33, n = 227 and e = 29 = 11101:

so 3329 ≡
227

113 (indeed).



Fast exponentiation, v.2 (L to R)

Can get rid of the running variable q by writing

me ≡
n

(
· · ·
(
(mb`)2mb`−1

)2
mb`−2 · · ·mb1

)2
mb0 .

r = 1

for i in [[0, `]]:

r = r2 % n

if b`−i = 1:

r = (r ∗m) % n

return r

In both cases: running time in O(log2 e)



Example (v.2)

With the same values as before:

which is coherent with previous results (but uses half the memory).



Ok: that’s fast

Indeed!

https://sagecell.sagemath.org/?z=eJx1zsEKgzAMBuC74DuEotCWIlN2EoQ9RxkTt2ZMSKpUYXv8VRyOgcslh-__SU69nzF0tzlN0sThHVpJ0MBEvcMgS1NdyqOJ62CouyI1IjsjUSaUqpcGxPExb20ROu8GbpGQ0c-y0prUGuDdgP8o_tXVxxBfBLFcyScBOfjigS-pfpQ35R3FTXGvqzUCDw6-J6yV4_CUbNB4pdbOGzP7T2k=&lang=sage&interacts=eJyLjgUAARUAuQ==


The RSA cipher (again)

E (e,m) ≡
n
me

D(d , c) ≡
n

c d

Correct decryption:

Why should there exist such exponents such that

mde ≡
n
m ∀m ??



Chinese Remainder Theorem

If n can be written as a product of coprime factors

n = n1 · · · nk ,

then there is an isomorphism of rings

Z/nZ ∼= Z/n1Z × · · · × Z/nkZ.

• (→) take remainders

• (←) use Bézout’s relation



Example

Z/12Z ∼= Z/3Z × Z/4Z



Euler’s ϕ function

Consider the number ϕ(n) of integers in [[1, n]] that are coprime with n.

Theorem (Fermat)

For all x coprime with n,

xϕ(n) ≡
n

1.

i.e., modular exponents work modulo ϕ(n): xa ≡
n
xb when a ≡

ϕ(n)
b.



Almost there

Special case: suppose n = p1 · · · pk is a product of distinct prime factors, so that

ϕ(n) = (p1 − 1) · · · (pk − 1).

Corollary

In this case, if f ≡
ϕ(n)

1 then x f ≡
n
x ∀x .

Hence: it is sufficient to ask that the RSA exponents satisfy

de ≡
ϕ(n)

1.



A small (thus very insecure) working example

Try here

https://sagecell.sagemath.org/?z=eJxdj00Kg0AMhfcDc4cgCDqU4k9tq9CLdFPECa3QRFE3vX2T1o7QTZL5Xnh5wwBwgTIHBwctVW3N-OiVZcq0VGdrrEFhVZEVJ2u8jHlWH0vl49TzAhGrUbQDDuRjI0R6YLhuYSB-JX4lm-AQaPDws9F3_DWzhiTBVdSE0_3Ush_ohk8k5CVJVe_0V-Sc3CHd7ZzzIWw4QTjP7R0biQDxHIk9bUm5m17j0g_crFq3RcN_jegNEgdUdg==&lang=sage&interacts=eJyLjgUAARUAuQ==
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Security of RSA

Public: n, e, c .

The attacker would like to recover m.

• Brute force on m: search for x such that

xe ≡
n
c .

=⇒ Impractical if n large

• Better: try to recover the decryption exponent d , then decrypt m like Bob

m ≡
n

e
√
c ≡

n
cd .



Trivial is ϕ(n) is known

Given e and ϕ(n), the extended Euclidean algorithm easily solves

de ≡
ϕ(n)

1.

But: computing ϕ(n) from n is (assumed to be) hard.

Best known algorithm: factor n = p1 · · · pk and use

ϕ(n) = (p1 − 1) · · · (pk − 1).



Factoring vs. splitting

Factoring n: finding the complete list of prime factors (p1, . . . , pk) for which

n = p1 · · · pk .

Splitting n: finding one prime factor p of n.

Essentially all known factorization algorithms are of the form

factors = [ ]

while n > 1:

p = split(n)

factors += [ p ]

n = n // p



Trial division

The simplest splitting algorithm:

p = 2

while p ≤
√
n:

if n% p = 0 return p

p += 1

return n

Quickly finds small (≤ 264) prime factors

=⇒ smallest prime factor should be as large as possible

pi ≈ k
√
n =⇒ take k = 2! (why not k = 1 ?)



Other factorization algorithms

There is a very large litterature devoted to the subject of integer factorization.

As of 2019, the best general purpose algorithm is the General Number Field Sieve

(GNFS) that factors an `-bit integer in

≈ 5.5 `1/3(ln `)2/3 time.

Public factorization record: RSA-728 (2009)

http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/RSA_numbers#RSA-768


Consequence on key length



According to RSA Security, Inc.

Symmetric key size Equivalent RSA key size

80 1024

112 2028

128 3072

256 15360
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Key generation

Recovering the decryption key should be hard for the attacker. . .

. . . but easy for Alice and Bob!

Ok since they are free to choose the prime factors of n.

Key generation: produces a RSA triple (n, d , e)



Prime factors

To generate an `-bit RSA modulus n:

• generate two random `/2-bit prime numbers p and q

• set n := p · q

To generate a random prime number:

• generate random integers until you get a prime!

(there are some very fast primality tests)

Note: density of prime numbers around x is ≈ 1
ln x

http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test


RSA exponents

• Knowing p and q, compute ϕ(n) = (p − 1)(q − 1)

• Pick e coprime with ϕ(n) (doesn’t even need to be chosen randomly)

• Compute d such that

de ≡
ϕ(n)

1

using the extended Euclidean algorithm (XGCD)
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Real-world RSA

The plain RSA described above has all sorts of problems:

• malleability: E (e,m1) · E (e,m2) = E (e,m1 ·m2)

• lack of randomness

• fixed size of plaintext

• . . .

In practice, a suitable padding scheme needs to be used.

=⇒ use a library!

http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
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